

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 5th Semester Examination, 2021

DSE-P1-PHYSICS

The figures in the margin indicate full marks. All symbols are of usual significance.

Candidates should also ensure that the chosen section in the paper DSE-1 is different from the chosen section in the paper DSE-2.

The question paper contains paper DSE-1A, DSE-1B and DSE-1C. The candidates are required to answer any *one* from *three* sections. Candidates should mention it clearly on the Answer Book.

DSE-1A

NANO-MATERIALS AND APPLICATIONS

Time Allotted: 2 Hours

Full Marks: 40

GROUP-A

1.	Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$
(a) What is the size range of nanomaterials?	1
(b) What do you mean by quasi-particles?	1
(c) What is thermionic emission?	1
(d) How many dimensions do the nanotubes have on the nanoscale?	1
(e) Filters used in XRD may eliminate which line?	1
(f) Selection of deposition process depends on which factor?	1
(g) Which deposition process is used when a film needs to be deposited on both sides of the wafer?	1
(n) What is double quantum dot?	1

GROUP-B

	Answer any three questions from the following	5×3 = 15
2.	Explain with suitable examples specific surface area of Nanoparticles and their special applications.	5
3. (a)	Distinguish between top-down approach and bottom-up approach for the fabrication of nanomaterials.	2
(b)	Explain chemical vapour deposition (CVD) technique.	3

	•	
4.	Write on the specific features of quantum dot lasers.	5
5.	If a quantum box is very small such that there are not any confined levels in the box, then under what condition there will be at least one bound level?	5
6.	Explain the conditions for blockade.	5
	GROUP-C	
	Answer any two questions from the following	$10 \times 2 = 20$
7.	(a) What is NEMS?	3
	(b) Explain the application of nanostructured thin films for photonic device.	5
	(c) Define magnetic quantum well.	2

	Solve the Schrödinger equation in order to describe the wave function and energy levels for two dimensional quantum wells. What are the properties of CNTs?	8 2
10. (a)	Make short notes on: Scanning Tunneling Microscopy	5+5

(b) Atomic Force Microscopy.

DSE-1B

ADVANCED MATHEMATICAL PHYSICS-I

Time Allotted: 2 Hours Full N		Marks: 40		
	GROUP-A			
1.	Answer any <i>five</i> questions from the following:	$1 \times 5 = 5$		
(a	1) If $F_1(s) = \frac{1}{s+2}$ and $F_2(s) = \frac{1}{s+3}$, find the inverse Laplace transform of	1		
	$F(s) = F_1(s) F_2(s)$.			
(b) Calculate the direct Laplace transformation of an arbitrary constant a .	1		
(c	t) Let $S = \{(-1, 0, 1), (2, 1, 4)\}$. Find the value of x for which $(3x+2, 3, 10)$ belongs to the linear span of S.	1		
(d) Define infinite dimensional vector space.	1		
(e	e) If <i>T</i> is a 5 th rank Cartesian tensor and <i>U</i> is a 2 nd rank Cartesian tensor, then what is the rank of $T_{ijklm}U_{lm}$?	5 1		
(f	Write the matrix representation of δ_{ij} in 2D.	1		
(g) What is an isotropic / invariant tensor? Give an example.	1		

2+8

What is XRD? Discuss its instrumentation and application briefly.

8.

(h) Find the orthogonal pair in \mathbb{R}^2 with respect to the inner product defined as $(x, y) = 3x_1y_1 + 2x_2y_2$, where $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ and $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$.

GROUP-B

Answer any *three* **questions** from the following $5 \times 3 = 15$

2. Express the following in terms of unit step functions and obtain Laplace 5 Transformation:

$$f(t) = \begin{cases} 4 \; ; \; 0 < t < 1 \\ -2 \; ; \; 0 < t < 3 \\ 5 \; ; \; t > 3 \end{cases}$$

3. Find the inverse Laplace Transform of

(a)
$$\frac{s+4}{s(s-1)(s^2+4)}$$

(b)
$$\cot^{-1}(1+s)$$
.

- 4. (a) Prove that the vectors (1, 1, 0), (1, 2, 3) and (2, -1, 5) form a basis for ℝ³.
 (b) Suppose u, v ∈ V and || u ||≤1 and || v ||≤1.
 Prove that √1-|| u ||² · √1-|| v ||² ≤ 1-|<u, v>|.
- 5. Show that the matrix $[g^{ij}]$ is the inverse of the matrix $[g_{ij}]$, where g is the metric 1+4 tensor. Hence calculate the contravariant components g^{ij} of the metric tensor in cylindrical polar coordinates.

6. (a) If
$$T_{ijk}$$
 is a tensor of rank 3, then prove that $\frac{\partial T_{ijk}}{\partial x^m}$ is a tensor of rank 4. 3

(b) Prove that the Cartesian tensor $A_{ijkl} = \partial_{ij}\partial_{kl}$ is an isotropic tensor.

GROUP-C

Answer any two	questions from the following	$10 \times 2 = 20$
7. (a) Solve the following equation by the	e Laplace transform method:	5

$$y'' + 2y' + 2y = 5\sin x$$

given y(0) = y'(0) = 0

3+2

1

2

(b) Apply the convolution theorem to obtain the function whose transform is $\frac{1}{(p^2+a^2)^2}$, where *a* is an arbitrary constant.

8. Find the inverse Laplace transformation of
$$\frac{1}{2}\log\left\{\frac{s^2+b^2}{(s-a)^2}\right\}$$
. 10

- 9. (a) If v_i are the components of a first order Cartesian tensor, show that $\nabla \cdot \vec{v}$ is a zero order tensor.
 - (b) Show that the T_{ij} given by

$$T = [T_{ij}] = \begin{pmatrix} x_2^2 & -x_1 x_2 \\ -x_1 x_2 & x_1^2 \end{pmatrix}$$

are the components of a second rank tensor.

- 10.(a) Four particles of equal mass m are placed on the vertices of a square of side 2acentred at the origin. Their coordinates are generally given by $(\pm a, \pm a, 0)$. Construct the moment of inertia tensor for the entire system and use it to obtain the principal moments of inertia.
 - (b) A vector is defined in the Cartesian coordinate system as $\vec{A} = 2\hat{i} + \hat{j}$. A new coordinate system is constructed using the basis vectors $\vec{e}_1 = \hat{i} + 2\hat{j}$ and $\vec{e}_2 = -\hat{i} - \hat{j}$. Find the dual basis vectors and the contravariant components A^1 and A^2 of A in this new system.

DSE-1C

CLASSICAL DYNAMICS

Time Allotted: 2 Hours

GROUP-A

1.	A	nswer any <i>four</i> questions from the following:	3×4 = 12
	. ,	/hat do you mean by generalized coordinate? What is the advantage of using eneralized coordinates?	1+2
		he potential energy of the particle is given by $V(x) = x^4 - 4x^3 - 8x^2 + 48x$. Find he points of stable and unstable equilibria.	3
	(c) E	xplain the meaning of normal modes and principal oscillations.	3
		tate the fundamental postulates of special theory of relativity. What is the gnificance of the postulates?	3
	(e) E	xplain the meaning of pressure and density at a point inside the fluid.	3
	(f) W	/hat is Reynold's number? What is its importance in the study of fluid motion?	1+2

4

Full Marks: 60

7

3

5

6

4

GROUP-B

	Answer any <i>four</i> questions from the following	6×4 = 24
2.	What is Hamilton's principle? Derive Lagrange's equation of motion from it.	2+4

3. Obtain the normal modes of small oscillation for the following dynamical system. 6

Use small angle approximation.

4.	(a)	Derive Poiseuille's equation in case of flow of liquid through a capillary tube.	4
	(b)	Write down Navier Stoke's equation for the motion of viscous fluid and explain the terms.	2
5.		Discuss the four momentum and the energy-momentum dispersion relation.	6
6.	(a)	Show that $E^2 = p^2 c^2 + m_0^2 c^4$ (symbols have usual meanings) for a relativistic particle of rest mass ' m_0 '.	3
	(b)	Determine the length and the orientation of a rod of length 10 m in a frame of reference which is moving with $0.6c$ velocity in a direction making 30° angel with the rod.	3

7. For a symmetric top, the Lagrangian is expressed as 6 $L = \frac{1}{2}I_1(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{1}{2}I_3(\dot{\psi} + \dot{\phi} \cos \theta)^2 - Mgl\cos\theta, \text{ where } \theta, \phi, \psi \text{ are the variables. Obtain the Hamiltonian. What are the integrals of motion in this case?}$

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

8. (a) Prove that the total energy *E* of a particle of mass *m* acted on by a central force is given by,

$$E = \frac{L^2}{2m} \left[\left(\frac{du}{d\phi} \right)^2 + u^2 \right] + V(r)$$

where V(r) is the potential energy. *L* is the angular momentum of the particle. $u = \frac{1}{r}$, (r, ϕ) being the polar coordinates of the particles.

(b) Obtain the Lagrangian, Hamiltonian, and equations of motion for a projectile near the surface of earth.

6

(c) Water is flowing with a speed of 50 cm/s through a pipe of diameter 3 mm. Calculate Reynold's number. Is the flow streamline? Given $\eta = 1$ centipoise.

2

4

- 9. (a) Discuss the time-derivatives that usually appear in the discussion of the motion of 8 any fluid.
 - (b) Explain the meaning of steady state and stationary state in the context of fluid 4 dynamics.
- 10.(a) Prove that the free-dimensional volume element dxdydz is not invariant under 4 Lorentz transformation while the four dimensional volume element dxdydzdt is invariant.
 - (b) A π -meson of rest mass m_{π} decays into a μ -meson of rest mass m_{μ} and a neutrino of mass m_{ν} . Show that the total energy of the μ -meson is $\frac{1}{2}\left[m^{2} + m^{2} m^{2}\right]c^{2}$

$$\frac{1}{2m_{\pi}} \left[m_{\pi}^2 + m_{\mu}^2 - m_{\nu}^2 \right] c^2 \; .$$

- (c) Obtain the relativistic energy momentum transformation relation.
- 11.(a) Determine the Lagrangian of a free particle in (i) Cartesian, (ii) Cylindrical, 3+3+3
 (iii) Spherical polar coordinates. Also find the expressions for the Hamiltonian of the corresponding systems.
 - (b) What do you mean by holonomic and scleronomic systems? Give examples. 3

—x—