

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2021

DSE-P1-Physics

The figures in the margin indicate full marks. All symbols are of usual significance.

Candidates should also ensure that the chosen section in the paper DSE-1 is
different from the chosen section in the paper DSE-2.

The question paper contains paper DSE-1A, DSE-1B and DSE-1C. The candidates are required to answer any one from three sections. Candidates should mention it clearly on the Answer Book.

DSE-1A

NANO-MATERIALS AND APPLICATIONS

Time Allotted: $\mathbf{2}$ Hours

GROUP-A

1. Answer any five questions from the following: $1 \times 5=5$
(a) What is the size range of nanomaterials? 1
(b) What do you mean by quasi-particles? 1
(c) What is thermionic emission? 1
(d) How many dimensions do the nanotubes have on the nanoscale? 1
(e) Filters used in XRD may eliminate which line? 1
(f) Selection of deposition process depends on which factor? 1
(g) Which deposition process is used when a film needs to be deposited on both sides 1 of the wafer?
(h) What is double quantum dot?

GROUP-B

Answer any three questions from the following
$5 \times 3=15$
2. Explain with suitable examples specific surface area of Nanoparticles and their special applications.
3. (a) Distinguish between top-down approach and bottom-up approach for the fabrication of nanomaterials.
(b) Explain chemical vapour deposition (CVD) technique.

UG/CBCS/B.Sc./Hons./5th Sem./Physics/PHYSDSE1/2021

4. Write on the specific features of quantum dot lasers.
5. If a quantum box is very small such that there are not any confined levels in the box, then under what condition there will be at least one bound level?
6. Explain the conditions for blockade.

GROUP-C

Answer any two questions from the following

7. (a) What is NEMS?3
(b) Explain the application of nanostructured thin films for photonic device. 5
(c) Define magnetic quantum well.
8. What is XRD? Discuss its instrumentation and application briefly.

9. (a) Solve the Schrödinger equation in order to describe the wave function and energy levels for two dimensional quantum wells.

(b) What are the properties of CNTs?
(a) Scanning Tunneling Microscopy
(b) Atomic Force Microscopy.

DSE-1B

Advanced Mathematical Physics-I

Time Allotted: $\mathbf{2}$ Hours
Full Marks: 40

GROUP-A

1. Answer any five questions from the following:
(a) If $F_{1}(s)=\frac{1}{s+2}$ and $F_{2}(s)=\frac{1}{s+3}$, find the inverse Laplace transform of

$$
F(s)=F_{1}(s) F_{2}(s) .
$$

(b) Calculate the direct Laplace transformation of an arbitrary constant a.
(c) Let $S=\{(-1,0,1),(2,1,4)\}$. Find the value of x for which $(3 x+2,3,10)$ belongs to the linear span of S.
(d) Define infinite dimensional vector space.
(e) If T is a $5^{\text {th }}$ rank Cartesian tensor and U is a $2^{\text {nd }}$ rank Cartesian tensor, then what is the rank of $T_{i j k l m} U_{l m}$?
(f) Write the matrix representation of $\delta_{i j}$ in 2 D .
(g) What is an isotropic / invariant tensor? Give an example.

UG/CBCS/B.Sc./Hons./5th Sem./Physics/PHYSDSE1/2021

(h) Find the orthogonal pair in \mathbb{R}^{2} with respect to the inner product defined as $(x, y)=3 x_{1} y_{1}+2 x_{2} y_{2}$, where $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$ and $y=\binom{y_{1}}{y_{2}} \in \mathbb{R}^{2}$.

GROUP-B

Answer any three questions from the following

2. Express the following in terms of unit step functions and obtain Laplace Transformation:

$$
f(t)=\left\{\begin{array}{cc}
4 ; & 0<t<1 \\
-2 ; & 0<t<3 \\
5 ; & t>3
\end{array} .\right.
$$

3. Find the inverse Laplace Transform of
(a) $\frac{s+4}{s(s-1)\left(s^{2}+4\right)}$
(b) $\cot ^{-1}(1+s)$.
4. (a) Prove that the vectors $(1,1,0),(1,2,3)$ and $(2,-1,5)$ form a basis for \mathbb{R}^{3}.
(b) Suppose $u, v \in V$ and $\|u\| \leq 1$ and $\|v\| \leq 1$.

Prove that $\sqrt{1-\|u\|^{2}} \cdot \sqrt{1-\|v\|^{2}} \leq 1-|\langle u, v\rangle|$.
5. Show that the matrix $\left[g^{i j}\right]$ is the inverse of the matrix $\left[g_{i j}\right]$, where g is the metric tensor. Hence calculate the contravariant components $g^{i j}$ of the metric tensor in cylindrical polar coordinates.
6. (a) If $T_{i j k}$ is a tensor of rank 3, then prove that $\frac{\partial T_{i j k}}{\partial x^{m}}$ is a tensor of rank 4.
(b) Prove that the Cartesian tensor $A_{i j k l}=\partial_{i j} \partial_{k l}$ is an isotropic tensor.

GROUP-C

Answer any two questions from the following $\quad 10 \times 2=20$
7. (a) Solve the following equation by the Laplace transform method:

$$
y^{\prime \prime}+2 y^{\prime}+2 y=5 \sin x
$$

given $y(0)=y^{\prime}(0)=0$

UG/CBCS/B.Sc./Hons./5th Sem./Physics/PHYSDSE1/2021

(b) Apply the convolution theorem to obtain the function whose transform is $\frac{1}{\left(p^{2}+a^{2}\right)^{2}}$, where a is an arbitrary constant.
8. Find the inverse Laplace transformation of $\frac{1}{2} \log \left\{\frac{s^{2}+b^{2}}{(s-a)^{2}}\right\}$.
9. (a) If v_{i} are the components of a first order Cartesian tensor, show that $\nabla \cdot \vec{v}$ is a zero order tensor.
(b) Show that the $T_{i j}$ given by

$$
T=\left[T_{i j}\right]=\left(\begin{array}{cc}
x_{2}^{2} & -x_{1} x_{2} \\
-x_{1} x_{2} & x_{1}^{2}
\end{array}\right)
$$

are the components of a second rank tensor.
10.(a) Four particles of equal mass m are placed on the vertices of a square of side $2 a$ centred at the origin. Their coordinates are generally given by ($\pm a, \pm a, 0$). Construct the moment of inertia tensor for the entire system and use it to obtain the principal moments of inertia.
(b) A vector is defined in the Cartesian coordinate system as $\vec{A}=2 \hat{i}+\hat{j}$. A new coordinate system is constructed using the basis vectors $\vec{e}_{1}=\hat{i}+2 \hat{j}$ and $\vec{e}_{2}=-\hat{i}-\hat{j}$. Find the dual basis vectors and the contravariant components A^{1} and A^{2} of A in this new system.

DSE-1C

Classical Dynamics

Time Allotted: 2 Hours

GROUP-A

1. Answer any four questions from the following:
(a) What do you mean by generalized coordinate? What is the advantage of using generalized coordinates?
(b) The potential energy of the particle is given by $V(x)=x^{4}-4 x^{3}-8 x^{2}+48 x$. Find the points of stable and unstable equilibria.
(c) Explain the meaning of normal modes and principal oscillations.3
(d) State the fundamental postulates of special theory of relativity. What is the 3 significance of the postulates?
(e) Explain the meaning of pressure and density at a point inside the fluid.
(f) What is Reynold's number? What is its importance in the study of fluid motion?

GROUP-B

Answer any four questions from the following

2. What is Hamilton's principle? Derive Lagrange's equation of motion from it.
3. Obtain the normal modes of small oscillation for the following dynamical system.

Use small angle approximation.
4. (a) Derive Poiseuille's equation in case of flow of liquid through a capillary tube.
(b) Write down Navier Stoke's equation for the motion of viscous fluid and explain the terms.
5. Discuss the four momentum and the energy-momentum dispersion relation.
6. (a) Show that $E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}$ (symbols have usual meanings) for a relativistic particle of rest mass ' m_{0} '.
(b) Determine the length and the orientation of a rod of length 10 m in a frame of reference which is moving with $0.6 c$ velocity in a direction making 30° angel with the rod.
7. For a symmetric top, the Lagrangian is expressed as
$L=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)+\frac{1}{2} I_{3}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}-M g l \cos \theta$, where θ, ϕ, ψ are the variables. Obtain the Hamiltonian. What are the integrals of motion in this case?

GROUP-C

Answer any two questions from the following

8. (a) Prove that the total energy E of a particle of mass m acted on by a central force is given by,

$$
E=\frac{L^{2}}{2 m}\left[\left(\frac{d u}{d \phi}\right)^{2}+u^{2}\right]+V(r)
$$

where $V(r)$ is the potential energy. L is the angular momentum of the particle. $u=\frac{1}{r},(r, \phi)$ being the polar coordinates of the particles.
(b) Obtain the Lagrangian, Hamiltonian, and equations of motion for a projectile near the surface of earth.

UG/CBCS/B.Sc./Hons./5th Sem./Physics/PHYSDSE1/2021

(c) Water is flowing with a speed of $50 \mathrm{~cm} / \mathrm{s}$ through a pipe of diameter 3 mm . Calculate Reynold's number. Is the flow streamline? Given $\eta=1$ centipoise.
9. (a) Discuss the time-derivatives that usually appear in the discussion of the motion of any fluid.
(b) Explain the meaning of steady state and stationary state in the context of fluid dynamics.
10.(a) Prove that the free-dimensional volume element $d x d y d z$ is not invariant under Lorentz transformation while the four dimentional volume element $d x d y d z d t$ is invariant.
(b) A π-meson of rest mass m_{π} decays into a μ-meson of rest mass m_{μ} and a neutrino of mass m_{v}. Show that the total energy of the μ-meson is $\frac{1}{2 m_{\pi}}\left[m_{\pi}^{2}+m_{\mu}^{2}-m_{\nu}^{2}\right] c^{2}$.
(c) Obtain the relativistic energy momentum transformation relation.
11.(a) Determine the Lagrangian of a free particle in (i) Cartesian, (ii) Cylindrical, (iii) Spherical polar coordinates. Also find the expressions for the Hamiltonian of the corresponding systems.
(b) What do you mean by holonomic and scleronomic systems? Give examples.

